
Scale-Equivariant Steerable Networks
Reproducibility Project – CS4240 Deep Learning

Mark Erik Lukacs, Stefan Petrescu

This poster provides an overview of the reproducibility project 
for the CS4240 Deep Learning Course. 

The project represents our attempt at reproducing the results of 
a scientific paper, namely Scale-Equivariant Steerable Networks 
(SESN) by Ivan Sosnovik, Michał Szmaja, and Arnold Smeulders. 

One of the main reasons for which CNNs excel in image 
recognition & classification is their underlying structure, 
equivariant to translations i.e. the translation of input features 
results in an equivalent translation of outputs. This is being 
achieved by weight sharing across the receptive field of the 
neurons in particular layers. However, CNNs are not equivariant 
to scale changes of the input. In real-world scenarios, it is 
desirable to recognize objects at different scales, as this can be 
applied and used in many domains. For example, this can be 
applied in computer vision for autonomous vehicles. Thus, we 
find that this paper solves a very important & exciting problem, 
that of constructing CNNs being equivariant to scale changes of 
the input.

Figure: Intuitive visualization, the network can recognize both small & large scale objects.

Introduction1
In the paper, the authors start from a mathematical background. 
They first define scale-translation equivariant convolution and 
show an efficient algorithm for it. 

Scale-equivariance is derived from the mathematical concept of 
group-equivariance. A group equivariant transformation means 
that if the input of the layer is transformed by transformation g, 
the output is also transformed by g. Here g can be any 
homomorphic mapping, like translation, rotation, mirroring, or 
scale. The authors defined the equivariant group H, as a 
translation followed by scaling. They have applied group 
convolution (a generalization of convolution), and transformed it 
into equation 7:

Method2
For the experiments, two datasets were considered: MNIST and 
STL-10. For both, we pre-processed the data, following the 
paper’s specific guidelines. For the MNIST, the data processing 
step consisted of rescaling the images, based on a randomly 
sampled uniform factor, between 0.3-1. Following this procedure, 
6 different realizations were generated. Each realization 
consisted of 60000 images, split into 10000 for training, 2000 for 
evaluation, and 48000 for testing. Furthermore, depending on the 
model (next section), we upscaled the images using bi-linear 
interpolation. 

Experiments3 Results5

Acknowledgements & Links
We would like to thank Nergis Tömen and Tomasz Motyka for 
their advice and helpful insights. 
Link to paper: 
https://arxiv.org/abs/1910.11093
Link to our project’s website: 
https://spetrescu.github.io
Link to our project’s GitHub repo: 
https://github.com/vioSpark/reproduction-project-DL2021
Link to our project’s blog:
https://lukacs-mark.medium.com/sesn-cec766026179

For the STL-10 dataset, data augmentation was also applied. 
Thus, in this case the images were normalized, padded with a 
12px border and then randomly cropped to their initial 96x96px 
size. Furthermore, random horizontal flips with a probability of 
50% were applied and cutout of 32px.

After replicating the modified MNIST dataset, we were able to 
reproduce the results. These were results similar to the authors’. 
For each of the models mentioned at the bottom of the previous 
section, 2 experiments were conducted: one for which the 
scaling factor was set to 1 and one for which the scaling factor 
was set to 0.5. Therefore, for each model, we obtained 12 results 
(6 for each realization). The results were stored in “results.yml” 
which was further processed using a Python script written by 
us. These are displayed in the table below. 

Implementation of equation 7 directly is not possible, therefore 
the authors decided to limit the number of scales to NS and 
represented each filter as a steerable filter. This means that each 
filter is a linear combination of Nb basis (each base is a 2D 
Hermite polynomial with a gaussian envelope, repeated NS times 
at different scales), where the learnable parameters are the 
values of the linear combination.
Since the first layer has no scale information embedded, this 
layer differs from the other layers. Using equation 7, the 
summation over S degenerates, and the T→H convolution can 
be defined as:
convTH(f, w, Ψ) = squeeze(conv2d(f, expand(w × Ψ)))
We have implemented this type of layer from scratch. However, 
we were unable to use it in our experiments.

In the case of the following layers, the scale axis contains 
information too. If the filters have only one scale, equation 7 
degenerates the same way, and the H→H layer can be defined 
as:
convHH(f, w, Ψ) = squeeze(conv2d(expand(f), expand(w × Ψ)))
If the filters have different scales, inter-scale interaction 
happens, and the output is being calculated by convolving (with 
convHH), for each scale, the input tensor and w individually –
this is being summed afterward. The figure below summarizes 
convTH and convHH.

Figure: Visual representation of the scale-translation equivariant convolutions (spatial 
components are hidden).

Firstly, regarding the project’s workflow, we analyzed the math 
and the algorithm presented in the paper. Here we saw how the 
scale-translation equivariant convolution is designed. 
Furthermore, we took a look at the algorithm representing these 
convolutions. Last but not least, we went through the data pre-
processing steps and reproduced the paper’s results, running 
the MNIST experiments on our own, using the paper’s available 
code. We were not able to reproduce the STL10 results, as this 
would have required access to computational power 
inaccessible to us at the moment.
Before presenting the actual method, we consider it important to 
mention the difference between equivariance and invariance. 
The latter is a special case of the prior – achieved by the feature-
extractor pooling layers present in CNNs’ architecture.
In comparison to the already mentioned translation equivariance 
for which if the input is shifted the output is shifted as well, 
translation invariance means that the output is the same, no 
matter how the input is shifted. Equivariance and invariance can 
be defined on other transformations as well. For example in the 
figure below 1 rotation equivariance and invariance are 
visualized. However, in our case, the authors tackled the 
problem of combining translation and scale – producing a scale-
translation equivariant/invariant neural network. 

Figure: Visualization of rotation equivariance and rotation invariance.

Equivariant Invariant

Figure: The definition of scale-translation equivariant convolution. Here Cin is the number of 
input channels, Cout is the number of output channels, ψn,m,s𝜎 is the corresponding scaled-filter 

(with learnable weights), and fn is the input image.

The invariance of the network is coming from the pooling layers, 
where max-pooling is applied to both the scale and translational 
dimensions (similarly applied to translation dimensions in 
regular CNNs). 

Figure: Example of image rescaling for MNIST; (left) Image before and (right) after rescaling.

Figure: STL-10 pre-processing pipeline (for better visualization purposes normalization by mean 
and standard deviation were not included in the figures); Initial image (top left), followed by 12px 

zero padding (middle), random cropping to the initial 96x96px dimension, random horizontal 
flipping with 50% probability (bottom left), and cutout of 32px (bottom right).

Although we tried ourselves to implement the method, we 
encountered some difficulties. Thus, in order to run the 
experiments, we used the available code, both for MNIST and 
STL-10. 
For the MNIST dataset, we experimented with the following 
models:
• mnist_ses_scalar_28
• mnist_ses_scalar_56
• mnist_ses_vector_28
• mnist_ses_vector_56
• mnist_ses_scalar_28p
• mnist_ses_scalar_56p
• mnist_ses_vector_28p
• mnist_ses_vector_56p

The experiments took approximately 14 hours, and ran on 
Google Collaboratory (using a NVIDA Tesla K80).

Method 28 x 28 28 x 28 + 56 x 56 56 x 56 +
SESN Scalar 
(ours)

1.95 ± 0.17 1.98 ± 0.14 1.68 ± 0.12 1.67 ± 0.18

SESN Scalar 
(paper’s)

2.10 ± 0.10 1.79 ± 0.09 1.74 ± 0.09 1.50 ± 0.07

SESN Vector 
(ours)

2.00 ± 0.2 2.00 ± 0.21 1.66 ± 0.17 1.59 ± 0.16

SESN Vector 
(paper’s)

2.08 ± 0.09 1.76 ± 0.08 1.68 ± 0.06 1.42 ± 0.07

Table: Replicated results for the MNIST dataset. The ‘+’ denotes scaling data augmentation.

The STL10 models defined by the authors had 11M parameters. 
We tried to run these with reduced batch size (to fit into our GPU 
limit of 12GB), but the model was training too slowly to 
reproduce meaningful results. Subsequently, these were not 
included.

Conclusion6
Although, at the first glance, the paper looked really “mathy”, we 
can say that after spending countless hours on Wikipedia 
articles trying to extend our knowledge in group theory, we kind 
of understood the authors’ intent. We believe that G–equivariant 
convolutions (such as scale–equivariant) are a promising 
direction for CNNs, as their applicability is undeniable. 

In conclusion, for this project, we have reproduced the data 
augmentation steps, re-run the MNIST experiments, and 
produced quasi-equivalent results. We tried to run the STL–10 
experiments but the lack of computational resources got the 
better of us. We tried to implement the layers themselves and, 
although we weren’t able to test it, we believe that we have 
successfully implemented the T→H layer.

https://arxiv.org/abs/1910.11093
https://spetrescu.github.io/
https://github.com/vioSpark/reproduction-project-DL2021
https://lukacs-mark.medium.com/sesn-cec766026179
https://github.com/vioSpark/reproduction-project-DL2021/blob/main/results.yml

